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On the Insecurity of Proactive RSA in the URSA
Mobile Ad Hoc Network Access Control Protocol

Stanisław Jarecki and Nitesh Saxena

Abstract— Access control is the fundamental security service
in ad hoc groups. It is needed not only to prevent unauthorized
entities from joining the group, but also to bootstrap other
security services. Luo, et al. proposed a set of protocols for
providing ubiquitous and robust access control (called URSA1)
in mobile ad hoc networks without relying on a centralized
authority. The URSA protocol relies on the new proactive RSA
signature scheme, which allows members in an ad hoc group
to make access control decisions in a distributed manner. The
proposed proactive RSA signature scheme is assumed secure
as long as no more than an allowed threshold of participating
members is simultaneously corrupted at any point in the lifetime
of the scheme.

In this paper, we show an attack on this proposed proactive
RSA scheme, in which an admissible threshold of malicious group
members can completely recover the group RSA secret key in
the course of the lifetime of this scheme. Our attack stems from
the fact that the threshold signature protocol which is a part
of this proactive RSA scheme leaks some seemingly innocuous
information about the secret signature key. We show how the
corrupted members can influence the execution of the scheme
in such a way so that the slowly leaked information is used to
reconstruct the entire shared secret.

I. INTRODUCTION

Access Control in Ad Hoc Groups. Ad hoc groups, such
as peer-to-peer (P2P) systems and mobile ad hoc networks
(MANETs), are very popular in today’s computing, especially
in the research community. They lack infrastructure and do
not need any trusted authority. Moreover, they are inherently
scalable and fault tolerant. Such characteristics of ad hoc
groups find many interesting applications in military and
commercial settings as well as in emergency and rescue
operations. However, their open nature and lack of centralized
control result in some security challenges.

The security research community recognized the need for
specialized security services in ad hoc groups. Access Control
is particularly important since most other traditional security
services are based upon it. In this context, access control is
needed to prevent unauthorized nodes from becoming a part of
the group and to establish trust among nodes in the absence of
a trusted authority. Access control is also essential to bootstrap
other security services, such as secure group communication
(group key agreement and key management), e.g., [38], [1]
and secure routing, e.g., Ariadne and SRP [21], [32].
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Threshold Cryptography, Threshold and Proactive Signa-
ture Schemes. The idea of distributing a cryptosystem so as to
secure it against corruption of some threshold, e.g. a minority,
of participating players is known as threshold cryptography
[12], and it is built on the polynomial secret-sharing technique
of Shamir [37].

A (t, n) threshold signature scheme [13] enables any sub-
group of t + 1 members in a group consisting of n > t
members, to collaboratively sign a message on behalf of that
group. This is achieved by secret-sharing the signature key,
e.g. the RSA secret key, among the group members, and
allowing them to compute a signature on some message via
a distributed protocol in which the members use the shares
of the signature key instead of the key itself. The scheme
is said to be t-secure if any coalition of at most t corrupt
members is unable to forge a valid threshold signature on
any message which honest members would not sign, and t-
robust if honest group members can efficiently produce a valid
signature even in the presence of at most t malicious members.
To achieve t-security, a threshold signature scheme must in
particular protect the secrecy of the signature key as long as
no more than t of the group members are corrupt.

A proactive signature scheme [19], based on techniques
of proactive secret sharing [20], is a threshold signature
scheme which remains secure and robust even if in every
time period, called “share update interval”, a possibly different
set of t group members is corrupted. This is achieved by
the members periodically updating their shares of the secret
signature key via a distributed share update protocol. Such an
update protocol should destroy the correlation between secret
shares learned by corrupted members in different time periods,
so that the scheme can tolerate any number of corruptions
throughout its lifetime as long as in any single time period
the number of simultaneously corrupted members does not
exceed t.

Application of Proactive Signatures to Access Control in
Ad Hoc Networks. As suggested by Zhou and Haas [39],
proactive signature schemes can be used to implement group
access control decisions without relying on a trusted and
always accessible group “manager”, who makes all admission
and revocation decisions on behalf of the group. In many
mobile group settings, such manager may be often inaccessible
to some subgroup of members. Moreover, in many applications
placing all trust in a single entity creates a security liability.

In contrast, the idea of the proactive signature based access
control mechanism for ad hoc groups is that any large enough
set of members can admit a new group member by using the
threshold signature protocol to compute the new member’s
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certificate, and by using a slight variation of the proactive
update protocol to give this member his share of the signature
key. Similarly, once any large enough set of members agrees
to revoke some existing member, the members collectively
sign the revocation statement, and trigger the proactive share
update protocol to leave the just revoked member without the
current share of the signature secret. Luo, et al. [28], [25],
[24], [29], [27] first proposed such access control protocol for
MANETs based on a new proactive RSA signature scheme
(which we analyze in this paper). Saxena et al. [35] imple-
mented similar access control protocol using the proactive DSS
signature scheme of Gennaro et al. [17]. The same authors [36]
examined the performance of a more efficient access control
protocol based on the proactive BLS signature scheme [5] of
Boldyreva [3], which relies on elliptic curve cryptography.

However, the common operation of signature verification
in DSS, BLS, and in all other discrete-log based signature
schemes, is orders of magnitude computationally more in-
tensive than the verification of RSA signatures. Therefore,
access control protocols based on an efficient provably secure
proactive RSA signature scheme offer an attractive alternative
to ones based on discrete-log based proactive signatures.

Problems with Currently Known Provably Secure RSA
Proactive Signature Schemes. Unfortunately, the most ef-
ficient currently known provably secure proactive RSA sig-
nature schemes, two schemes by Frankel et al. [15], [14]
and a scheme by Rabin [34], are not easily applicable to
securing access control in ad hoc groups by the methods
described above. The fundamental reason is that the arithmetic
operations involved in the RSA signatures seem more difficult
to securely distribute than the DSS or the BLS cryptosystems.
The difficulty in distributing RSA signatures is caused by
the seeming necessity to perform computations on the secret
shares modulo φ(N) = (p − 1)(q − 1), where N = pq
is the RSA modulus. Performing operations modulo φ(N)
is difficult because this number must stay secret for the
distributed RSA scheme to be secure. Note that revealing
φ(N) enables anyone to immediately compute the RSA private
key d = e−1 (mod φ(N)) from the RSA public key (e,N).
In contrast, both the DSS signatures and BLS signatures of
[5] are based on variants of the discrete logarithm problem
where all the moduli used in computations involving secret
shares can be made public. In particular, the proactive RSA
scheme of [15] is practical only for small groups, while in
the other two provably secure proactive RSA schemes known
today [14], [34], the members participating in the threshold
signature protocol need to reconstruct the secret shares of
the group members that are currently inaccessible to them.
In this way both protocols essentially equate a temporarily
inaccessible group member with a corrupt one, whose secrets
might just as well be reconstructed. This is an undesirable
feature for asynchronous ad hoc groups where members are
often inaccessible to one another. In such settings we need
to enable isolated but large enough subgroups of members to
operate without reconstructing everyone else’s secrets. COCA
(a distributed on-line certification authority) [40] employs a
modified version of Rabin’s RSA scheme which overcomes

this problem of availability. However, this scheme, which
is based on combinatorial secret sharing as opposed to the
additive sharing of Rabin, is applicable only for small groups,
because in large groups the number of combinations (nt )
becomes intractable.

Proactive RSA Scheme Proposed for the URSA Ad Hoc
Network Access Control Protocol. In an effort to mitigate the
above problem of the known proactive RSA signatures, Luo,
et al. [28], [25], [24], [29], [27] proposed a new proactive
RSA scheme, geared to wards providing a security service,
called “URSA”, in MANETs. The original description of this
proactive RSA scheme and the URSA application can be found
in [28]. Subsequently both the proactive RSA scheme and
URSA were described in [25], [24], [29], and most recently
in a journal version [27]. The URSA proactive RSA scheme
can be applicable to MANETs because it avoids the need
to access all shares during the threshold signature protocol.
This is because it relies solely on Shamir’s polynomial secret
sharing scheme [37], as opposed to resorting to an additional
layer of additive secret sharing, as is done by the two most
efficient provably secure proactive RSA schemes [14], [34]
discussed above. The core of the URSA proactive RSA scheme
is the so-called t-bounded offsetting algorithm which is used
to reconstruct the RSA signature md (mod N) from t + 1
partial signatures produced individually by the t+1 members
participating in the signing protocol.

The first problem with this scheme was pointed out in
[31]. Namely, contrary to what the authors of the proposal
claimed, their scheme does not provide robustness in signature
generation in the presence of t malicious members. Simply
speaking, the robustness mechanisms proposed by the authors
are faulty because they require certain verification equations
to hold even though they in fact do not hold, because the
equations involve computation in two different groups (see
[31] for more details). Hence, the set of t malicious members
can prevent the honest members from efficiently creating a
valid signature. However, this robustness problem in the t-
bounded proactive RSA scheme can be solved, if the secret
sharing is performed over a large prime number, instead over
the RSA modulus N of the original proposal, coupled with
special-purpose zero-knowledge proof protocols for proving
equality of discrete logarithms in two different groups [9]
and range of a discrete logarithm [6]. Such proof protocols
are not very fast, but their expense can be tolerated because
they would need to be executed only in the (rare) case of a
corrupted member providing an incorrect partial signature to
other members. (This will be a rare occurrence because a ma-
licious member behaving in such a manner would be detected
by the honest players, and therefore would be subsequently
revoked from the group.) We summarize the robustness fix to
the URSA proactive RSA scheme in Appendix A. This fix led
to an efficient provably secure proactive RSA scheme [22].
We also believe this to be of independent interest.

Since the t-robustness of this scheme can be ensured by the
above modifications, there remains a question if the (modified)
URSA proactive RSA scheme is secure against a coalition of
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corrupt t members2 whose goal is not to prevent members from
issuing signatures but to learn the secret-shared RSA signature
key and to be thus able to forge signatures on the group’s
behalf. The question is interesting because the proposed URSA
proactive RSA scheme, amended as described above, would
provide efficiency and functionality advantages over the best
known provably secure proactive RSA schemes [15], [14],
[34]. However, the answer turns out to be negative.3

Our Contribution: An Attack on the URSA Proactive RSA
Scheme. We demonstrate the insecurity of the URSA proactive
RSA signature scheme by constructing an explicit attack in
which the admissible group of t corrupted members colludes
in the proactive protocol in such a way so that they reconstruct
the whole RSA secret key d after a realistic number of runs
of the proactive update protocol and the threshold signature
protocol.

Our attack exploits the fact that the t-bounded offsetting
threshold RSA signature protocol, which is employed in
the URSA proactive RSA scheme, leaks certain seemingly
innocuous information about the secret signature key. The
information that the adversary learns about the secret key in a
run of the signature protocol depends on the current sharing of
the secret key and on which group of members participates in
the protocol. While it is not clear how dangerous this released
information is for a single secret sharing, in a proactive
signature scheme the secret sharing is refreshed with every
proactive update, and therefore the released information about
the secret key can be different in each update interval. It turns
out that the corrupted members can influence an execution of
the update protocol in such a way that the executions of the
signature protocol during the subsequent update interval will
release information which is both new and correlated with
the information the adversary has gained so far. Thus our
attack can be seen as a simple search algorithm, where the
information learned in a signature protocol tells the adversary
which branch to pick next, and the proactive update protocol
allows the adversary to pick that branch.

The attack poses a realistic threat. For example, for the
threshold size t = 7 and for the RSA public key of e = 65537
(utilized in the implementation of URSA [25]) and 1024-bit
RSA modulus N , our attack needs 163 executions of the
proactive update protocol and 1148 runs of the signature proto-
col to succeed. The attack succeeds assuming that throughout
these 163 update periods, the t corrupted players belong to the
so-called “update group” of players which play an active role
in the proactive update protocol.

However, the URSA proactive RSA protocol is more vul-
nerable than what is immediately implied by the above attack.

2In the standard (t+ 1, n) threshold cryptographic model, any set of t+ 1
out of a total of n members share the ability to perform a cryptographic
operation (e.g., signing) in the presence of at most t corruptions. All the
earlier versions of the URSA papers [28], [25], [24], [29] work in this standard
model. However, the latest journal version of URSA [27] based its scheme
on a slightly modified and a non-standard model, wherein any t+1 members
share the signing operation, but only a maximum of t − 1 corruptions are
allowed. The attack we describe in this paper is based on the standard model.
However, as we discuss later in Section V, the URSA scheme appears insecure
even in the non-standard model considered in [27].

3In particular, although Luo, et al. claim that their scheme is provably
secure, the security proofs that appear in [28] are incorrect.

First, our attack does not make use of all the information
leaked in the signature protocol, thus it is quite possible that
another attack, which does utilize all the available information
succeeds in recovering the private RSA key even faster and/or
succeeds in recovering the key even if, say, only a smaller
subset of the special “update group” of players is corrupted.
Moreover, even if the attack we describe is slowed down, for
example by slowing down the rate of the proactive updates, it
recovers 512 + (r − logt+1(e)) ∗ log2(t+ 1) most significant
bits of d after r > logt+1(e) update rounds, which gives
512 + 3(r − 5) MSB bits of d for the above e = 65537 and
t = 7. Therefore our attack raises doubts about the security
of the URSA proactive RSA scheme even for smaller number
of rounds. It is hard to say much about the security of this
protocol, for example after r = 34 rounds, because while it
is not currently known how to recover the whole RSA key
knowing 600 of the MSBs of d, we also do not know any
arguments that RSA remains secure with this side information
about d revealed, and it would be rather surprising if such
arguments existed.

Paper Organization. The rest of this paper is organized as fol-
lows: Section II summarizes the notation and introduces some
definitions. Section III describes the URSA proactive RSA
signature scheme. We then present an attack on this scheme
in Section IV. Finally, we elaborate on the implications of our
attack for the security of the URSA scheme in Section V.

II. NOTATION AND SETTING

An Adversary: An adversary against a proactive signature
scheme, and thus also against a MANET group access control
mechanism like URSA which utilizes a proactive signature
scheme, is able to compromise any set of at most t members
in the group in every update round (see below). After com-
promising a member, the adversary learns its corresponding
secret share and can force this member to behave arbitrarily
in the protocol. We assume the worst case where all the t
corrupted members collude, and in fact all corruptions are
simply scheduled and controlled by a single entity, called an
“adversary” and denoted by A.

Share Update “Round”, or “Interval”: This is the time
period between any two consecutive share update procedures.
In the URSA design, the share update protocols occur periodi-
cally, for example twice a day. The reason for period execution
of this procedure is to re-randomize the secret sharing in such
a way that all the currently non-revoked players receive new
random shares of the same RSA secret key d. (We describe
this protocol in detail in Section III-C.)4 We will assume that
in every share update round, there is a significant amount
of signature requests. In fact, our attack requires just t such

4We note that if the update protocol is triggered only periodically as in
the URSA design, this has a consequence that only up to t members can
be meaningfully revoked from the group within an update interval, because
a player is fully revoked only when his share of the secret key d becomes
invalid, and that happens only when all the remaining non-revoked players
perform a share update protocol. Alternatively, as suggested by [36], an update
protocol can also be triggered reactively, as an immediate response in the case
of revocation of an unusually large number of players.
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signature requests per update round to recover the key at a
maximum speed.

Table I summarizes the notation used in the rest of this
paper.

TABLE I
NOTATION

Mi group member with unique index i
ssi secret share of Mi

t “adversarial threshold”, i.e.
the number of tolerated corruptions

n total number of members Mi

(N, e) RSA public key
(d, p, q) RSA private key

TD trusted dealer
A the adversary
|x| number of bits in a binary

representation of x
lg(x) log2(x)

a = b (mod c) a ≡ b (mod c)

III. THE PROACTIVE RSA SIGNATURE SCHEME IN URSA

In this section we describe the proactive RSA signature
scheme of [28], [25], [24], [29], [27] used in the URSA ad hoc
network access control protocol. We will refer to this scheme
as an “URSA proactive RSA signature scheme”.

A. The Setup Procedure

A trusted dealer TD is involved in a one-time setup to
bootstrap the system. The dealer is not required hereafter and
in fact is assumed to vanish from the scene, or, equivalently,
to erase his memory. TD generates the standard RSA pri-
vate/public key pair, i.e. it picks two random primes p and q,
sets N = pq, sets (e,N) as a public key where gcd(e,N) = 1,
and as a private key it sets a number d < N such that
ed = 1 mod φ(N), where φ(N) = (p− 1)(q − 1).

Once the standard RSA key pair is chosen, TD secret-shares
the RSA secret key d using a slight modification of Shamir
secret sharing [37]. Namely, TD selects a random polynomial
f(z) over ZN of degree t, such that the group secret is f(0) =
d (mod N). Next, TD gives to each member Mi, for i =
1, · · · , n, a secret share ssi = f(i) (mod N). Notice that the
secret d is shared over a composite modulus N as opposed to
a prime modulus as in the original scheme of Shamir, but our
attack does not depend on what modulus is used in the secret
sharing.

B. The Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to
generate in a distributed manner an RSA signature s = md

(mod N) under the secret-shared key d. The URSA threshold
RSA signature protocol consists of two phases: First each
participating member creates its partial signature on the
intended message and sends it to the signature recipient, and
then the recipient locally reconstructs the RSA signature from
these partial signatures.

Partial Signature Generation: Let G denote the set of identi-
fiers of the t+ 1 members in the group who participate in the
threshold signature protocol. Using polynomial interpolation
we can write the secret key d as

d =
∑
j∈G

ssj l
(G)
j (mod N)

where l
(G)
j =

∏
i∈G,i 6=j

(−i)
j−i (mod N) Notice that N = pq

has only two very large factors, and therefore all the elements
(j−i) for i, j ∈ G will have inverses modulo N . Each member
Mj , for j ∈ G, outputs his partial signature s(G)

j on m as

s
(G)
j = md

(G)
j (mod N) , where d

(G)
j = ssj l

(G)
j (mod N)

(1)
Signature Reconstruction: On receiving t + 1 partial sig-
natures s(G)

j from the t + 1 group members Mj in G, the
signature recipient reconstructs the RSA signature s using
the “t-bounded-offsetting” algorithm which works as follows.
Since

∑
j∈G d

(G)
j = d (mod N) and 0 ≤ d

(G)
j ≤ N − 1 for

all j’s, therefore

d =
∑
j∈G

d
(G)
j − α(G)N (over the integers) (2)

for some integer α(G) ∈ [0, t]. Equation (2) implies that

s = md = (
∏
j∈G

s
(G)
j )m−α

(G)N (mod N)

for some integer α(G) ∈ [0, t]. Since there can be at most
t + 1 possible values of α(G), the signature recipient can
recover s = md (mod N) by trying each of the t+1 possible
values Yα = Y (m−N )α (mod N) for Y =

∏
j∈G s

(G)
j and

α = 0, · · · , t, and returning s = Yα if (Yα)e = m (mod N).
The most significant cost factor in this procedure is an expo-
nentiation m−N (mod N), and therefore the computational
cost of the URSA threshold RSA signature protocol for each
of the signers and for the recipient is about one full (1024 bit)
exponentiation modulo N .
Remark: It is important to note that the above t-bounded
offsetting threshold RSA signature algorithm reveals the value
of α(G), which, as will be described in section IV, leaks
some information about the secret-shared private key d to
an adversary who corrupts t of the players participating in
group G. This information leakage in fact exposes the whole
proactive RSA scheme to an efficient key-recovery attack.

C. The Proactive Share Update Protocol

The goal of the proactive share update protocol is to re-
randomize the secret sharing of the private RSA key d held
by the group members. This protocol was first proposed for
both proactive secret sharing and for proactive cryptosystems
and signature schemes by Herzberg, et al. [20], [19]. The
URSA proactive share update protocol is a variant of this
protocol which is more efficient, especially in settings where
some players can be inactive or temporarily disconnected from
others, as in MANETs.
The “Classic” Share Update Protocol. The proactive share
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update protocol of [20], [19] proceeds as follows (when
sharing is done modulo N ): Every member Mj chooses a
random partial update polynomial δj(z) over ZN of degree t
with the constant term being zero. The sum of these partial
update polynomials defines the update polynomial δ(z) =∑
j=1,n δj(z) (mod N). Note that δ(0) = 0. For each pair of

members (Mj ,Mi), player Mj gives a share δj(i) of his partial
update polynomial to Mi. Each member Mi then computes his
new secret share (to be used in the threshold signature protocol
in the subsequent update interval) as

ssi = ss′i +

n∑
j=1

δj(i) = ss′i + δ(i) (mod N)

where ss′i is Mi’s existing share, i.e. a share this player used
in the previous interval. All the information pertaining to this
protocol except of the new share ssi is then erased. Note that
if ss′ = f ′(i) (mod N) for all i then the new secret-sharing
polynomial f(z) is defined as f(z) = f ′(z)+δ(z) (mod N),
and it is therefore a t-degree polynomial s.t. f(0) = f ′(0) = d
(mod N).

However, it is important to notice that the new secret-
sharing polynomial f(z) is not necessarily a random t-degree
polynomial s.t. f(0) = d (mod N). This is because a corrupt
player Mj can distribute its update polynomial δj(z) only
after all the other corrupt players Mi see their shares of all
the other update polynomials. In this way, the corrupt players
can control the new secret-sharing polynomial f(z) to some
degree, by controlling the shares of f(z) held by the corrupted
players. In provably-secure proactive schemes that employ
this proactive share update protocol, like the proactive DSS
or BLS signatures [18], [3], this adversarial ability does not
pose any harm. However, as we will see in section IV, this
control ability means trouble for the URSA proactive RSA
scheme since the information about shared secret d leaked
in the threshold signature protocol depends precisely on the
shares held by the corrupted players.
The URSA Two-Stage Modification of this Protocol. The
URSA proactive RSA scheme utilizes a simple modification of
the above share update protocol which improves the protocol’s
efficiency. This modification can indeed be used to speed up all
proactive cryptosystems that use the [20] protocol, as the above
mentioned schemes of [18], [3]. The URSA proactive share
update protocol consists of two stages. The protocol relies on
an existence of a designated group of players Ω, which we
will call an “update group”, consisting of t group members.5

The first stage of the protocol proceeds exactly like the above
protocol of Herzberg et al., except that only the players Ω
participate in it. In other words, players Mj ∈ Ω create their
update polynomials δj(z), send their shares δj(i) to other
members Mi ∈ Ω, and thus the players in Ω can be said to
hold in secret-shared form the update polynomial δ(z) defined
as δ(z) =

∑
j∈Ω δj(z) (mod N). In the second stage of the

URSA proactive share update protocol, the members of the
update group Ω provide shares of this update polynomial δ(i)

5In some URSA descriptions it seems that the Ω group needs to have t+1
and not t members. We believe that t members is enough, and that the issue
does not have a significant bearing on anything considered in this paper.

to all remaining (and non-revoked) group members Mi 6∈ Ω.
In this way all group members Mi will get their update share
and can compute the new share f(i) = f ′(i) + δ(i) (mod N)
as before.

The URSA papers describe two protocols for how these δ(i)
update shares are transferred from the Ω players to their final
destinations. Even though the details of the second version of
this protocol are a little unclear, these details do not affect
the attack we describe in this paper. For completeness, we
sketch the two variants as follows: In the first version, each
Mi gets its δ(i) share by communicating with each of the
players Mi ∈ Ω directly. The players in Ω jointly reconstruct
the δ(i) value by first sharing masking random values among
themselves. In the second version, either the δ(i) update shares
or the whole δ(z) polynomial (this version is not very clear to
us), appear to be distributed to the rest of the group members
encrypted under the group public key (e,N). Presumably, each
member Mi reconstructs his share of this update polynomial
δ(i) by contacting her t+ 1 neighbors who either decrypt her
encrypted share or decrypt the whole polynomial δ(z) and
evaluate it at point i at the same time. It is not clear how
this second version can be implemented securely, but the first
version is standard and we see no vulnerabilities in it.

Choosing the Ω Update Group. We need to note here that the
attack on the URSA proactive RSA scheme that we present in
this paper depends crucially on all of the t players in the above
update group Ω to be the corrupted players. It is therefore
important for the practical feasibility of the attack how this Ω
group is decided. From the initial reply of the URSA authors
to the attack presented in this paper [26], it appears that the
details of how the Ω group is decided are not set in stone in the
design of the URSA scheme. This is not surprising since the
idea of modifying the Herzberg et al. protocol by delegating
the update work to a smaller set of players Ω was introduced
for the reasons of efficiency, not security.

The fixes proposed in [26], e.g. choosing the Ω group
as the t players with smallest IDs, seem problematic: First,
such players would need to be identified in some distributed
protocol, and second, the resulting protocol would now be still
under the attack, but only if the t players with lowest IDs are
corrupted. Moreover, the resulting protocol would then need
all these Ω players to be always present and connected, which
goes against the URSA philosophy of providing group access
control in environments where some players can become
inactive and disconnected. Possibly, the tweak that would slow
the attack we describe in this paper the most would choose
the Ω group differently in every round. This tweak, however,
has similar problems: (1) It is not clear how to make sure that
the Ω membership rotates without the global knowledge of the
current membership list, which would reduce the applicability
of the resulting protocol, and (2) the resulting protocol would
again need the scheduled players to be up and connected
at the right times. In our understanding, the attractive idea
of the original philosophy of URSA was that the Ω group
can be formed by any t players, and moreover that several
such groups can be independently created in disconnected
fragments of the network.
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Unfortunately, while the ability for any group of t currently
active and connected players to form the Ω update group
would make the URSA scheme most reliable and attractive,
because of the security vulnerability of this scheme which we
describe in this paper, such freedom in choosing Ω would
also lead to the fastest key-recovery attack on the resulting
scheme. While it is still possible that there exists a smart
tweak of the Ω-choosing process which would both slow
down in practice the attack we describe here, and would not
impact the applicability of the URSA scheme to the “on/off
presence, on/off communication links” setting it targets, we
believe that what is really needed is a replacement of the
URSA proactive RSA scheme with a provably secure proactive
signature scheme.

IV. AN ATTACK ON THE URSA PROACTIVE RSA SCHEME

A. Overview of the Attack

The goal of the adversary in our attack is to recover
the secret-shared private RSA key d in the URSA protocol.
Consider an adversary A who compromises t members. The
full attack holds as long as these t members form the “update
group” Ω (see section III-C above), and it holds regardless
of what indices these players hold. However, for the sake of
simplicity in the exposition, we will assume that the adversary
corrupts members M1, · · · ,Mt throughout the lifetime of the
scheme, and that these players also always form the Ω update
group. We note, however, that our attack does not depend
on the ability of the adversary to corrupt a different set of
members every update period. This means that for example,
as long as the Ω group is allowed not to change between the
updates, the adversary can recover the private RSA key quite
quickly if only he corrupts that subset and otherwise follows
the protocol so as to avoid detection and revocation of these
corrupted members from the group.

Information Leakage in the Signature Protocol. Assume
that A participates in the threshold signature protocol on some
message in which the set of participating members G (see
section III-B above) is made of all the corrupted members
M1, · · · ,Mt and a single honest member Mp, for some p ∈
[t + 1, · · · , 2t]. (Here too, the attack works for other players
Mp, but we fix the above t values of p to simplify the pre-
sentation.) Let Gp represent the set of identifiers {1, · · · , t, p}
corresponding to the members participating in this run of the
threshold signature protocol. By equation (2), the secret key d
satisfies the following equation for some integer α(Gp) ∈ [0, t]:

d =
∑

j∈Gp,j 6=p

d
(Gp)
j + d(Gp)

p − α(Gp)N (over the integers)

Let us denote Sp =
∑
j∈Gp,j 6=p d

(Gp)
j (over integers)

and Dp = Sp (mod N). Note that since A knows
ss1, ss2, · · · , sst, he can compute Sp and Dp.

By employing the reconstruction using the t-bounded off-
setting algorithm, A learns the value of α(Gp) corresponding
to this signing group Gp. Now, note that from values α(Gp)

and Sp, the adversary also learns whether the shared secret
d ∈ [0, · · · , N − 1] is less than or greater than Dp. This

is because Sp < α(Gp)N if and only if d < Dp; and
Sp ≥ α(Gp)N if and only if d ≥ Dp.

Utilizing the Information Leakage to Recover the Key. At
first sight, the information of whether the secret RSA key
d is left or right of some value Dp in the [0, · · · , N − 1]
range seems to provide only information on the few most
significant bits of d. However, recall that over the lifespan
of the system, the members update their secret shares by
performing the proactive share update procedure. As we will
see below, it turns out that during this procedure, as long
as the “update group” Ω is formed by the corrupted players
{M1, · · · ,Mt}, the adversary can choose the values of his new
shares ss1, ss2, · · · , sst, which gives him complete freedom
in specifying the resulting values Dp, for p = t + 1, · · · , 2t,
to be any values that he wants (we describe this process in
subsections IV-B and IV-C below). Since in any subsequent
run of the threshold signature protocol involving members
M1, · · · ,Mt,Mp the adversary learns whether the secret d lies
to the left or to the right of the corresponding value Dp (for
p = t+1, · · · , 2t), the adversary can learn most about d if the
chosen values Dt+1, · · · , D2t divide the range [0, N − 1] into
t + 1 equally spaced intervals {[0, Dt+1 − 1], [Dt+1, Dt+2 −
1], · · · , [D2t, N − 1]}.

In this case, A learns from t instances of the threshold
signature protocol, for t different values p = t + 1, · · · , 2t,
whether d lies to the left or to the right of each of these Dp’s.
Consequently A shrinks the search interval for the secret d
from [0, N − 1] to some interval [Dp, Dp+1 − 1] which is
smaller than the original interval by the factor of t+ 1. If the
adversary repeats this attack recursively, then with every share
update protocol his search range narrows by the factor of t+1.
This is equivalent to saying that in every update interval, the
adversary learns the lg(t+1) new most significant bits (MSBs)
of the secret d. Therefore, this search procedure will end and
the secret key d will be completely recovered after d |N |

lg(t+1)e
share update rounds. We refer to this search procedure as a
“(t+1)-ary search”.

Example with t=1: Consider a simple example with t =
1. Assume that the adversary A compromises member M1.
Assume also that M1 collaborates with member M2 in a
threshold signature protocol. The signing group is therefore
G2 = {1, 2}, which yields the following equation:

d = d
(G2)
1 + d

(G2)
2 − α(G2)N

Here S2 = D2 = d
(G2)
1 . A now employs the t-bounded

offsetting algorithm and learns the value of α(G2). If α(G2) =

0, A learns that d ≥ d(G2)
1 (mod N); otherwise if α(G2) = 1,

he learns that d < d
(G2)
1 (mod N). Assuming that in the share

update procedure A can pick his secret share ss1 so that the
resulting D2 = d

(G2)
1 is whatever A wants, A can set D2 = d

N−1
2 e. Then, with every share update round, A halves the

search interval, and thus he performs a binary search which
recovers the secret d completely in lg(N)[= |N |

lg(2) ] rounds.

Attack Speed-ups: Since in many cases the RSA secret key
d can be efficiently recovered once some number of the most
significant bits are recovered, the number of rounds in the
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attack can be further reduced. Moreover, for the commonly
used small values of e, like e = 3, 17, or 65537, the attack
can be sped-up by the factor of two because the first few
MSB bits of d enable A to efficiently compute the first half
of the MSBs of d. We describe such speed-up mechanisms in
subsection IV-D below.

B. Optimal Choice of New Secret Shares

In each share update protocol the adversary’s goal is to set
the t values Dt+1, · · · , D2t which will hold in the subsequent
update period in a manner described above. In order to do
that, the adversary first solves for the optimal new secret shares
ss1, ss2, · · · , sst which would result in values Dt+1, · · · , D2t

he desires, using the following system of t modular linear
equations:

ss1l
(Gt+1)
1 + ss2l

(Gt+1)
2 + · · ·+ sstl

(Gt+1)
t = Dt+1 (mod N)

ss1l
(Gt+2)
1 + ss2l

(Gt+2)
2 + · · ·+ sstl

(Gt+2)
t = Dt+2 (mod N)

· · · · · ·

· · · · · ·

ss1l
(G2t)
1 + ss2l

(G2t)
2 + · · ·+ sstl

(G2t)
t = D2t (mod N)

These equations are linearly independent as the following
matrix L is invertible:

L =


l
(Gt+1)
1 l

(Gt+1)
2 · · · l

(Gt+1)
t

l
(Gt+2)
1 l

(Gt+2)
2 · · · l

(Gt+2)
t

· · ·
l
(G2t)
1 l

(G2t)
2 · · · l

(G2t)
t

 =

(−1)t
∏t
i=1(

∏t
j=1,j 6=i(−j)∏t
j=1,j 6=i(i−j)

)


1
t

1
t−1 · · · 1

1
t+1

1
t · · · 1

2

· · ·
1

2t−1
1

2t−2 · · · 1
t


Thus, by inverting the above matrix the adversary can

compute the optimal secret share values ss1, · · · , sst he needs
in the next update round, in order to achieve his optimal
values St+1, · · · , S2t in the signature protocols performed in
that update round. The adversary is now left with the task of
forcing the proactive update protocol to actually arrive at these
optimal secret shares ss1, · · · , sst for the corrupted members
M1, · · · ,Mt.

C. Adversarial Behavior in the Update

We show that as long as the adversary controls the players
in the update group Ω, the adversary can easily influence
the proactive share update protocol to arrive at the optimal
shares ss1, · · · , ssn he computed above. In the case of larger
Ω groups, the attack succeeds as long as the adversary corrupts
t members in Ω, and as long as some of these members can
“speak last” in the first phase of the URSA share update
protocol (see section III-C).

Let us describe the attack assuming the most general case
that |Ω| ≥ t. Let B ⊆ Ω denotes the subset of t members
corrupted by the adversary, and let Mb ∈ B be the corrupted
member who “speaks last” in the first phase of the share update

protocol. Since there is no established sequence or order in
which the members in Ω take part in the secret share update
procedure, the adversary can wait until each member in Ω
except of Mb distributes their shares of the random update
polynomials δj , j ∈ Ω\{Mb}, before distributing the shares of
his polynomial δb(z) as the last one. (If the order is somehow
fixed, although it’s not clear how it could be without heavy
performance penalty for the protocol, the adversary would still
win assuming that he corrupts the player who is entitled to
speak last.) Recall that the update polynomial is equal to

δ(z) =
∑

j∈Ω\{Mb}

δj(z) + δb(z) (mod N)

and that the new shares of each members are computed as
ssi = ss′i + δ(i) where ss′i is the current share of Mi.

To fix the resulting shares of the corrupted members to
come out as the optimal values ss1, · · · , sst specified above,
member Mb chooses his partial update polynomial δb(z) in
such a way that the resulting update polynomial δ(z) satisfies
δ(i) = ssi − ss′i (mod N) for i = 1, · · · , t. To do that, Mb

sets values δb(i) for i = 1, · · · , t as

δb(i) = ssi − ss′i −
∑

j∈G\{Mb}

δj(i) (mod N)

The Mb player then interpolates these values to recover the
δb(z) update polynomial he should use.

Importantly, note that this adversarial behavior is indistin-
guishable to outside observers from prescribed behavior an
honest player exhibits in the protocol. The attack succeeds if
Mb picks his partial update protocol in the above way instead
of the prescribed way of picking this polynomial at random,
but the difference cannot be observed by the honest players,
and thus this attack would be undetected.

D. Speeding-up the Attack

By following the above attack procedure, in every update
round the adversary A learns new lg(t + 1) most significant
bits (MSBs) of d. Assuming that A needs to discover all the
|N |-bits of the RSA secret key d, A needs d |N |

lg(t+1)e update
rounds, and t signature protocol instances within each update
interval as described above, to complete the attack. However,
there are several ways in which A can speed up this search.
First, we can assume that at least the last 40-bits of the secret
d can be obtained by a brute-force search once all the other
bits are found, because the candidate d can be efficiently tested
given the public key (e,N). This reduces the number of rounds
in the attack to d 1

lg(t+1) (|N | − 40)e. Second, we can speed
up this search by making a simple observation about half of
the MSBs of d for small e values, and by utilizing several
known results regarding the security of the RSA cryptosystem
under partial key exposure [4], [2]. Below we explain the speed
up for small e’s, and we list the other applicable results and
explain how they speed up our search algorithm. The graph in
Figure (1) summarizes this discussion by showing the number
of rounds required in the attack w.r.t the range of the public
exponent e for 1024-bit RSA modulus N , taking as an example
a threshold value t = 7.
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Fig. 1. Currently required # of proactive update rounds to recover d for a
given value of logN (e), assuming |N | = 1024, t = 7.

Theorem 1: Given only the first log2(e) MSBs of d, the
first half of MSBs of d can be efficiently computed.

Proof: Note that ed = 1 (mod φ(N)) implies that d =
1/e(1+kφ(N)) for some integer k = 1, · · · , e−1. Therefore,
since N −φ(N) <

√
N , it follows that 0 ≤ d̂k−d <

√
N for

d̂k = b1/e(1 + kN)c for one of the e− 1 choices of k. Note
that the d̂k values can be publicly computed, and note that
d̂k+1 − d̂k ≈ N/e for every k, and therefore that the log2(e)
MSBs of d determine the appropriate k (and d̂k) values, and
therefore, since |d̂k−d| <

√
N for that k, they also determine

the 512 MSBs of d.
The import of the above observation for our attack is

very simple: Since the above choices of the e − 1 values
d̂1, · · · , d̂e−1, are neatly spread in the [0, N − 1] interval in
distances of N/e apart from each other, in our attack based
on the (t + 1)-ary search, the adversary can identify the
appropriate d̂k (and k) value, and thus recover the first |N |/2
MSBs of d by the above theorem, after just d lg(e)

lg(t+1)e rounds
of the share update protocol.

Therefore, for small e’s, the attack requires only

r >
1

lg(t+ 1)

(
lg(e) +

|N |
2
− 40

)
(3)

rounds of share updates for the adversary to learn the whole
secret d. This means that the current implementation of URSA
which uses the well-known value e = 65537 [25] can be
attacked in just 163 update rounds for a modest threshold of
t = 7.

For larger values of e, the results of [4], [2] on the RSA
key security with partial key exposure imply the following
speed-ups in our RSA key recovery attack:

Theorem 2: [4] If e is a prime in the range [2m, 2m+1],
with |N |4 ≤ m ≤ |N |

2 , then given m MSBs of d, there is a
polynomial time algorithm to compute d.

Theorem 3: [4] If e is in range [2m, 2m+1] and is a product
of at most r primes, with |N |

4 ≤ m ≤ |N |
2 , then given the

factorization of e and m MSBs of d, there is a polynomial
time algorithm to compute all of d.

If e meets either of the above criteria, the number of rounds
r required in our attack reduces to within the range

d |N |
4lg(t+ 1)

e ≤ r ≤ d |N |
2lg(t+ 1)

e

Theorem 4: [2] If e is in range [N0.5, N0.725], then the
number of MSBs needed to completely recover d is given by
|N |
8 (3 + 2α+

√
36α2 + 12α− 15) where α = logN (e).

If e meets the above criteria, the number of rounds required
to recover the secret key d is given by d |N |

8lg(t+1) (3 + 2α +√
36α2 + 12α− 15)e

V. DISCUSSION

While the above results for general e values are interesting,
in practice people want to use RSA with small e values, like
e = 3, 17, or 65537 (all of which are prime numbers of
the form 2i + 1 for a small value of i, which makes the
exponentiation se (mod N) involved in the RSA signature
verification take only i + 1 modular multiplications), and
for these values our attack holds if (1) t members of the
update group Ω are corrupted and one of the corrupted player
speaks last, (2) if in every update interval some t chosen
honest players Mp are coaxed into participating in a signature
protocol (note that the adversary’s attack does not depend on
what message is used in this protocol), and (3) if the system
lasts for r = 163 update rounds, which given the twice a day
rate of updates gives only two months.

We think that these are quite reasonable assumptions.
There’s certainly nothing in the adversarial model of a proac-
tive signature scheme and of the URSA group access control
scheme, which would disallow the adversary from satisfying
each of the above criteria.

As we discussed in the last subsection of section III-C, the
attack can probably be slowed down in if some modifications
are employed in the process of choosing the “update group”
Ω, to make it harder for the adversary to corrupt this group,
or, equivalently, to make it harder for the adversary to have
whatever players he does corrupt be chosen as the Ω group.
However, summing up the discussion from that section, it is
not clear how to modify the protocol in order to make the
adversary’s success significantly harder, and at the same time
not to severely limit the applicability of the URSA scheme.

Perhaps more importantly, the attack we exhibit shows that
even if the adversary does not satisfy all the above criteria, the
adversary still learns meaningful information about the RSA
private key d, which makes the security of the resulting system
doubtful. For example, as we discussed in the introduction, if
the adversary successfully participates in just r = 34 instead of
r = 163 update rounds (for 1024-bit N , e = 65537 and t = 7),
the adversary will learn 600 most significant bits of d. Given
the steady progress in the ability to recover the full d from
partial knowledge [4], [2], there is little hope that such partial
information can be shown not to weaken the RSA system.

Finally, our attack uses only very specific part of the
information leaked in the URSA threshold RSA signature
protocol. We showed that if the adversary corrupts t of the
signing t+1 players, and if the remaining (t+1)-th player Mp

can be known beforehand, the leaked information is equivalent
to whether the shared secret d lies to the left or to the right of
some value Dp which can be computed and in fact controlled
by the adversary. However, information about d leaks also if
(1) other players Mp, p 6∈ [t + 1, · · · , 2t] participate in the
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threshold signature protocol, and if (2) less than t corrupted
players participate in this protocol. The information revealed
about d in these cases is more complicated than the d <> Dp

information we used in our attack, but it is nevertheless easy to
define as well, and it can very well be used to either speed up
the attack we propose even more, or to extend it to adversaries
who (1) corrupt less than t of the players participating in the
threshold signature protocol, or (2) corrupt less than t players
in the update group Ω, or (3) fail to predict which honest
players will participate in the threshold signature protocol.

REFERENCES

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik.
Exploring robustness in group key agreement. In ICDCS, 2001.

[2] J. Blomer and A. May. New Partial Key Exposure Attacks on RSA. In
CRYPTO ’03, 2003.

[3] A. Boldyreva. Efficient Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-group Signature Scheme.
In Practice and Theory in Public Key Cryptography, 2003.

[4] D. Boneh, G. Durfee, and Y. Frankel. An Attack on RSA Given a Small
Fraction of the Private Key Bits. In ASIACRYPT’98, 1998.

[5] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil
Pairing. In ASIACRYPT’01, 2001.

[6] F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval.
In EUROCRYPT’00, volume 1807 of LNCS, pages 431–444, 2000.

[7] F. Boudot and J. Traor. Efficient Publicly Verifiable Secret Sharing
Schemes with Fast or Delayed Recovery. In International Conference
on Information and Communication Security (ICICS), 1999.

[8] J. Camenisch and M. Michels. Proving in Zero-Knowledge that a
Number Is the Product of Two Safe Primes. In EUROCRYPT’99, 1999.

[9] J. Camenisch and M. Michels. Separability and Efficiency for Generic
Group Signature Schemes. In CRYPTO, 1999.

[10] A. Chan, Y. Frankel, and Y. Tsiounis. Easy Come - Easy Go Divisible
Cash. In EUROCRYPT’98, volume 1403 of LNCS, pages 561–575, 1998.
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APPENDIX

A. Robustness Fix to the URSA Proactive RSA Scheme

A trusted dealer shares the RSA private key d by providing
random shares ssi, ss′i ∈ Zq (for a large prime q > N ) to
a member Mi using Shamir’s polynomial secret sharing [37].
The dealer also broadcasts a commitment to the polynomial
(computed mod p, where q|p−1) as in the Pedersen’s verifiable
secret sharing [33].

Each member Mi computes the partial signature si = mdi

(mod N), where di = ssj lj (mod q), and lj denotes the
Lagrange coefficient for a given set of t+1 signing members.
To prove correctness of its partial signature, each Mi proves
in zero-knowledge that there is a pair of integers (di, d

′
i) s.t.

wi0 = gdihd
′
i mod p , si = mdi mod N , 0 ≤ di < q

Here wi0 denotes the Pedersen’s commitment to Mi’s secrets
broadcast by the dealer during the sharing phase. It is crucial
that the range of di is checked because otherwise player
Mi can submit its partial signature as md′i mod N where
d′i = di + kq for some k. An efficient zero-knowledge proof
system for the proof of equality of discrete logarithms in two
different groups was given in [7], [9], and the efficient proof
that a committed number lies in a given range appeared in [6].
All these proofs are honest verifier zero-knowledge and can
be converted either into standard zero-knowledge proof at the
expense of 1-2 extra rounds using techniques of [11], [30], or
into a non-interactive proof in the random oracle model using
the Fiat-Shamir heuristic. We adopt the notation of [8] for
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representing zero-knowledge proof of knowledge protocols.
For example, ZKPK{x : R(x)} represents a ZKPK protocol
for proving possession of a secret x which satisfies statement
R(x). In the protocols to follow, u (≥ 80) and v (≥ 40) are
security parameters.
Protocol for proving the correctness of a partial signature:
ZKPK{di, d′i : wi0 = gdihd

′
i (mod p) ∧ si = mdi

(mod N) ∧ di ∈ [0, q − 1]}
The signer (or prover) Mi proves to the verifier the pos-

session of its correct secret share di by using the following
zero-knowledge proof system. The verifier can either be one of
the players or an outsider who has inputs wi0, g, h, p, si,m,N,
and q. All the protocols run in parallel, and failure of these
protocols at any stage implies the failure of the whole proof.

1) The verifier follows the setup procedure of the Damgard-
Fujisaki-Okamoto commitment scheme [11], e.g. it picks a safe
RSA modulus n and two elements G,H in Z∗n whose orders
are greater than 2. (We refer to [11] for the details of this
commitment scheme.) If N is a safe RSA modulus then set
n = N , G = (G′)2 mod N , H = (H ′)2 mod N for random
G′, H ′ ∈ Z∗n.

2) The prover computes the commitment C = GdiHR

(mod n), where R is picked randomly from [0, 2v(q − 1)]
and uses Protocol (1) (see below), by substituting
(x, x′1, x

′
2, g1, h1, g2, h2, n1, n2, w1, w2, b, b

′) with
(di, R, d

′
i, G,H, g, h, n, p, C,wi0, q − 1, 2v(q − 1)),

respectively, to execute: ZKPK{di, R, d′i : C = GdiHR

(mod n) ∧ wi0 = gdihd
′
i (mod p)}

3) The prover then uses Protocol (1) (see below), by sub-
stituting (x, x′1, x

′
2, g1, h1, g2, h2, n1, n2, w1, w2, b, b

′) with
(di, R, 0, G,H,m,m, n,N,C, si, q − 1, 2v(q − 1)), respec-
tively, to execute: ZKPK{di, R : C = GdiHR

(mod n) ∧ si = mdi (mod N)}
4) The prover uses Protocol (2) (see below), by substitut-

ing (x, x′, b) with (di, R, q − 1), respectively, to execute:
ZKPK{di, R : C = GdiHR (mod n) ∧ di ∈ [0, q − 1]}

Protocol (1). ZKPK{x, x′1, x′2 : w1 = gx1h
x′
1

1

(mod n1) ∧ w2 = gx2h
x′
2

2 (mod n2)}
Assumption: x, x′2 ∈ [0, b] and x′1 ∈ [0, b′].

This protocol, from [8], [6], is perfectly complete, honest
verifier statistical zero-knowledge and sound under the strong
RSA assumption [16] with the soundness error 2−u+1, given
than (g1, h1, n1) is an instance of the Damgard-Fujisaki-
Okamoto commitment scheme [16], [11].

1) The prover picks random r ∈ [1, . . . , 2u+vb − 1] , η1 ∈
[1, . . . , 2u+vb′ − 1], η2 ∈ [1, . . . , 2u+vb − 1] and computes
W1 = gr1h

η1
1 (mod n1) and W2 = gr2h

η2 (mod n2). It then
sends W1 and W2 to the verifier V .

2) The verifier selects a random c ∈ [0, . . . , 2u − 1] and sends it
back to the prover.

3) The prover responds with s = r + cx (in Z), s1 = η1 + cx′1
(in Z) and s2 = η2 + cx′2 (in Z)

4) The verifier verifies as gs1h
s1
1 = W1w1

c (mod n1) and
gs2h

s2
2 =W2w2

c (mod n2).

Protocol (2). ZKPK{x, x′ : C = GxHx′
(mod n) ∧ x ∈

[0, b]}
Assumption: x ∈ [0, b] and x′ ∈ [0, 2vb].

This protocol (from [6]) is an exact range proof, honest
verifier statistical zero-knowledge, complete with a proba-
bility greater than 1 − 2−v , and sound under the strong
RSA assumption given that (G,H, n) is an instance of the

Damgard-Fujisaki-Okamoto commitment scheme, similarly as
in protocol (1).

1) The prover sets T = 2(u + v + 1) + |b|, X = 2Tx,X ′ =

2Tx′, β = 2u+v+1
√
b and CT = GXHX′

(mod n).
2) The prover uses Protocol (3) (see below), by substitut-

ing (x, x′, com,B, γ) with (X,X ′, CT , 2
T b, 2T/2β), respec-

tively, to execute the following (note that X ∈ [0, 2T b]):
ZKPK{X,X ′ : CT = GXHX′

(mod n) ∧ X ∈
[−2T/2β, 2T b+ 2T/2β]}
Proving that X ∈ [−2T/2β, 2T b + 2T/2β] implies that x ∈
[0, b], since 2T/2β < 2T .

Protocol (3). ZKPK{x, x′ : com = GxHx′
(mod n) ∧ x ∈

[−γ,B + γ]} (Here γ = 2u+v+1
√
B)

Assumption: x ∈ [0, B] and x′ ∈ [0, 2vB].
This proof was proposed in [6] and is honest verifier

statistical zero-knowledge, complete with a probability greater
than 1−2−v , and sound under the strong RSA assumption just
like protocol (2).

1) The prover executes ZKPK{x, x′ : com = GxHx′

(mod n)}
2) The prover sets x1 = b

√
xc, x2 = x − x21, x̂1 =

b
√
B − xc, x̂2 = B − x − x̂21, and chooses randomly r1,

r2, r̂1, r̂2 in [0, 2vB], such that r1+r2 = x′ and r̂1+r̂2 = −x′.
3) The prover computes new commitments e1 = Gx

2
1Hr1

(mod n), ê1 = Gx̂
2
1H r̂1 (mod n), e2 = Gx2Hr2

(mod n), ê2 = Gx̂2H r̂2 (mod n), and sends e1 and ê1 to
the verifier.

4) The verifier computes e2 = com/e1 (mod n) and ê2 =
GB/(com ∗ ê1) (mod n).

5) The prover uses Protocol (4) (see below), by substituting
(x, x′, comsq) with (x1, r1, e1) and then with (x̂1, r̂1, ê1),
to execute the following: ZKPK{x1 : e1 = Gx

2
1Hr1

(mod n)}
ZKPK{x̂1 : ê1 = Gx̂

2
1H r̂1 (mod n)} This proves that e1

and ê1 hide a square.
6) The prover uses Protocol (5) (see below), by substituting

(x, x′, com2, B1) with (x2, r2, e2, 2
√
B), respectively and

then with (x̂2, r̂2, ê2, 2
√
B), respectively, to execute the fol-

lowing (note that x2 and x̂2 ∈ [0, 2
√
B]): ZKPK{x2 : e2 =

Gx2Hr2 (mod n) ∧ x2 ∈ [−γ, γ]}, and ZKPK{x̂2 : ê2 =
Gx̂2H r̂2 (mod n) ∧ x̂2 ∈ [−γ, γ]}. This proves that e2 and
ê2 hide numbers belonging to [−γ, γ].
Steps 2, 5 and 6 above, imply that x ∈ [−γ,B + γ].

Protocol (4). ZKPK{x, x′ : comsq = Gx
2

Hx′
(mod n)}

This protocol appeared in [16], generalized in [11] and
proves that a committed number is a square. It is honest
verifier statistical zero-knowledge, perfectly complete, and
sound under the strong RSA assumption just like protocol (2).

Protocol (5). ZKPK{x, x′ : com2 = GxHx′

(mod n) ∧ x ∈ [−2u+vB1, 2
u+vB1]}

Assumption: x ∈ [0, B1], and x′ ∈ [0, 2vB1].
This proof, proposed in [10], allows a prover to prove

the possession of a discrete logarithm x lying in the range
[−2u+vB1, 2

u+vB1] given x which belongs to a smaller inter-
val [0, B1]. Using the commitment scheme of [16], [11], this
proof is honest verifier statistical zero-knowledge, complete
with a probability greater than 1− 2−v , and sound under the
strong RSA assumption with soundness error 2−u+1.
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